Retinoic acid-induced 1 gene haploinsufficiency alters lipid metabolism and causes autophagy defects in Smith-Magenis syndrome
November 2022
Abstract
November 2022
February 2023.
January 2023.
Tito Damiani, Stefano Bonciarelli, Gerhard G Thallinger, Nikolai Koehler, Christoph A Krettler, Arif K Saliho
December 2023.
Laura Goracci, Eleonora Petito, Alessandra Di Veroli, Emanuela Falcinelli, Caterina Bencivenga, Elisa Giglio, Cecilia Becattini, Edoardo De Robertis, Gaetano Vaudo, Paolo Gresele
Ischemic cardiovascular and venous thromboembolic events are a frequent cause of death in severe COVID-19 patients. Platelet activation plays a key role in these complications, however platelet lipidomics have not been studied yet. The aim of our pilot investigation was to perform a preliminary study of platelet lipidomics in COVID-19 patients compared to healthy subjects. Lipid extraction and identification of ultrapurified platelets from eight hospitalized COVID-19 patients and eight age- and sex-matched healthy controls showed a lipidomic pattern almost completely separating COVID-19 patients from healthy controls. In particular, a significant decrease of ether phospholipids and increased levels of ganglioside GM3 were observed in platelets from COVID-19 patients. In conclusion, our study shows for the first time that platelets from COVID-19 patients display a different lipidomics signature distinguishing them from healthy controls, and suggests that altered platelet lipid metabolism may play a role in viral spreading and in the thrombotic complications of COVID-19.
Keywords: COVID-19; Platelet lipidomics.
July 2023.
Stefano Bonciarelli, Bruna Neves, Pedro Domingues, Tânia Melo, Laura Goracci, Maria Rosário Domingues
Phosphatidylinositols (PIs) are complex lipids that play a key role in cell signaling. Like other phospholipids, they are esterified with unsaturated fatty acyl residues (FAs), making them susceptible to modification by reactive oxygen and nitrogen species (RNS). Recent studies using mass spectrometry (MS)-based lipidomics approaches have revealed that lipid nitration results in a plethora of structurally and chemically modified lipids (epilipids), including nitrated and nitroxidized derivatives of phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines, and cardiolipins. However, there is a notable lack of knowledge regarding the characterization of RNS-modified PI derivatives. In this study, we used C18 high-resolution liquid chromatography-tandem MS approaches to describe the fragmentation signature of nitrated and nitroxidized PIs, bearing different fatty acyl chains. Using this approach and accurate mass measurements, we were able to identify nitro- PI derivatives, dinitro- and nitrohydroxy- derivatives for a few PI species. The data showed the typical neutral loss of nitrous acid (HNO2) as well as the fragmentation patterns corresponding to modified fatty acyl chains (such as NOx-RCOO–, [M – NOx-RCOOH – H]– and [M – NOx-RCOOH – C6H10O5 – H]–), making it possible to identify these epilipids. The susceptibility of PIs to nitration was also investigated, revealing that it depends exclusively on the chains of unsaturated FAs esterified in PI, showing a higher conversion rate for those with C18:1. Overall, the knowledge gathered in this study will contribute to the precise characterization of these epilipids in complex biological samples, offering new opportunities to unveil the pathophysiological roles of nitrated and nitroxidized PI derivatives at the cellular and tissue levels.
Keywords: LC-MS; lipidomics; nitration; nitrative stress; nitroxidative stress.