Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9

Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9

June 2003.

Zamora, Ismael; Afzelius, Lovisa; Cruciani, Gabriele

Abstract

The aim of the present study is to develop a method for predicting the site at which molecules will be metabolized by CYP 2C9 (cytochrome P450 2C9) using a previously reported protein homology model of the enzyme. Such a method would be of great help in designing new compounds with a better pharmacokinetic profile, or in designing prodrugs where the compound needs to be metabolized in order to become active.

The methodology is based on a comparison between alignment-independent descriptors derived from GRID Molecular Interaction Fields for the CYP 2C9 active site, and a distance-based representation of the substrate. The predicted site of metabolism is reported as a ranking list of all the hydrogen atoms of each substrate molecule. Eighty-seven CYP 2C9-catalyzed oxidative reactions reported in the literature have been analyzed. In more than 90% of these cases, the hydrogen atom ranked at the first, second, or third position was the experimentally reported site of oxidation.

MetaSite:  Understanding Metabolism in Human Cytochromes from the Perspective of the Chemist

MetaSite:  Understanding Metabolism in Human Cytochromes from the Perspective of the Chemist

September 2005.

Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R

Abstract

Identification of metabolic biotransformations can significantly affect the drug discovery process. Since bioavailability, activity, toxicity, distribution, and final elimination all depend on metabolic biotransformations, it would be extremely advantageous if this information could be produced early in the discovery phase. Once obtained, this information can help chemists to judge whether a potential candidate should be eliminated from the pipeline or modified to improve chemical stability or safety of new compounds. The use of in silico methods to predict the site of metabolism in phase I cytochrome-mediated reactions is a starting point in any metabolic pathway prediction.

This paper presents a new method, specifically designed for chemists, that provides the cytochrome involved and the site of metabolism for any human cytochrome P450 (CYP) mediated reaction acting on new substrates. The methodology can be applied automatically to all the cytochromes for which 3D structure is known and can be used by chemists to detect positions that should be protected in order to avoid metabolic degradation or to check the suitability of a new scaffold or prodrug.

The fully automated procedure is also a valuable new tool in early ADME-Tox assays (absorption, distribution, metabolism, and excretion toxicity assays), where drug safety and metabolic profile patterns must be evaluated as soon, and as early, as possible.