MassChemSite for In-Depth Forced Degradation Analysis of PARP Inhibitors Olaparib, Rucaparib, and Niraparib

MassChemSite for In-Depth Forced Degradation Analysis of PARP Inhibitors Olaparib, Rucaparib, and Niraparib

February 2023

Stefano BonciarelliJenny DesantisSimone CerquigliniLaura Goracci 

 

Abstract

Drugs must satisfy several protocols and tests before being approved for the market. Among them, forced degradation studies aim to evaluate drug stability under stressful conditions in order to predict the formation of harmful degradation products (DPs). Recent advances in LC-MS instrumentation have facilitated the structure elucidation of degradants, although a comprehensive data analysis still represents a bottle-neck due to the massive amount of data that can be easily generated. MassChemSite has been recently described as a promising informatics solution for LC-MS/MS and UV data analysis of forced degradation experiments and for the automated structural identification of DPs. Here, we applied MassChemSite to investigate the forced degradation of three poly(ADP-ribose) polymerase inhibitors (olaparib, rucaparib, and niraparib) under basic, acidic, neutral, and oxidative stress conditions. Samples were analyzed by UHPLC with online DAD coupled to high-resolution mass spectrometry. The kinetic evolution of the reactions and the influence of solvent on the degradation process were also assessed. Our investigation confirmed the formation of three DPs of olaparib and the wide degradation of the drug under the basic condition. Intriguingly, base-catalyzed hydrolysis of olaparib was greater when the content of aprotic-dipolar solvent in the mixture decreased. For the other two compounds, whose stability has been much less studied previously, six new degradants of rucaparib were identified under oxidative degradation, while niraparib emerged as stable under all stress conditions tested.

 

[/vc_row]

 

Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma

Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma

November 2022

Angela CriscuoloPalina NepachalovichDiego Fernando Garcia-Del RioMike LangeZhixu NiMassimo BaroniGabriele CrucianiLaura GoracciMatthias Blüher Maria Fedorova

 

Abstract

Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in the regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is complicated by their low abundance and often unknown, biological context-dependent structural diversity. Here, we provide a workflow based on the combination of bioinformatics and LC-MS/MS technologies to support identification and relative quantification of oxidized complex lipids in a modification type- and position-specific manner. The developed methodology is used to identify epilipidomics signatures of lean and obese individuals with and without type 2 diabetes. The characteristic signature of lipid modifications in lean individuals, dominated by the presence of modified octadecanoid acyl chains in phospho- and neutral lipids, is drastically shifted towards lipid peroxidation-driven accumulation of oxidized eicosanoids, suggesting significant alteration of endocrine signalling by oxidized lipids in metabolic disorders.

 

[/vc_row]

 

Retinoic acid-induced 1 gene haploinsufficiency alters lipid metabolism and causes autophagy defects in Smith-Magenis syndrome

Retinoic acid-induced 1 gene haploinsufficiency alters lipid metabolism and causes autophagy defects in Smith-Magenis syndrome

November 2022

Elisa Maria TurcoAngela Maria Giada GiovenaleLaura SirenoMartina MazzoniAlessandra CammareriCaterina MarchiorettiLaura GoracciAlessandra Di VeroliElena MarchesanDaniel D’AndreaAntonella FalconieriBarbara TorresLaura BernardiniMaria Chiara MagnificoAlessio PaoneSerena Rinaldo, Matteo Della MonicaStefano D’ArrigoDiana PostorivoAnna Maria NardoneGiuseppe ZampinoRoberta OnesimoChiara LeoniFederico CaicciDomenico RaimondoElena BindaLaura TrobianiAntonella De JacoAda Maria TataDaniela FerrariFrancesca CutruzzolàGianluigi MazzoccoliElena ZivianiMaria PennutoAngelo Luigi VescoviJessica Rosati 

 

Abstract

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.

 

[/vc_row]

 

Guiding the choice of informatics software and tools for lipidomics research applications

Guiding the choice of informatics software and tools for lipidomics research applications

February 2023.

Zhixu Ni Michele WölkGeoff JukesKarla Mendivelso EspinosaRobert AhrendsLucila AimoJorge Alvarez-JarretaSimon AndrewsRobert AndrewsAlan BridgeGeremy C ClairMatthew J ConroyEoin FahyCaroline GaudLaura GoracciJürgen HartlerNils HoffmannDominik KopczyinkiAnsgar KorfAndrea F Lopez-ClavijoAdnan MalikJacobo Miranda AckermanMartijn R MolenaarClaire O’DonovanTomáš PluskalAndrej ShevchenkoDenise SlenterGary SiuzdakMartina KutmonHiroshi TsugawaEgon L WillighagenJianguo XiaValerie B O’DonnellMaria Fedorova

 

Abstract

Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks. However, for researchers, deciding which approach best suits their application relies on ad hoc testing, which is inefficient and time consuming. Here we first review the data processing pipeline, summarizing the scope of available tools. Next, to support researchers, LIPID MAPS provides an interactive online portal listing open-access tools with a graphical user interface. This guides users towards appropriate solutions within major areas in data processing, including (1) lipid-oriented databases, (2) mass spectrometry data repositories, (3) analysis of targeted lipidomics datasets, (4) lipid identification and (5) quantification from untargeted lipidomics datasets, (6) statistical analysis and visualization, and (7) data integration solutions. Detailed descriptions of functions and requirements are provided to guide customized data analysis workflows.

 

[/vc_row]