Software assisted analysis for Peptide Catabolism

Software assisted analysis for Peptide Catabolism

Institute for Research in Biomedicine (IRB Barcelona) 35 EPS European Peptide Symposium, Dublin (Ireland) 

Anna Escolà (1,2), Antoni Riera (1,2), Aurora Valeri (3), Ismael Zamora (4,5), Tatiana Radchenko (4,5) 1. 

Abstract

The interest in using peptide molecules as therapeutic agents is due to their high selectivity and efficacy. However, most peptide-derived drugs cannot be administered orally because of their instability in the gastrointestinal tract. To achieve better ADME properties the following chemical modifications are typically applied: substitution of the common L-amino acids to D-amino acids, cyclization of the peptide and others. Somatostatin or Somatotropin release-inhibiting factor (SRIF14) is a natural hormone that is being used as gastric anti-secretory drug as well as to treat growth hormone secretion disorders and endocrine tumors. The substitution of phenylalanine, using non-natural aromatic amino acids to enhance the aromatic interactions, naturally present in the hormone between Phe6, Phe7 and Phe11 has been studied before. 

We used a new approach implemented in MassMetaSite to process data-dependent acquisition (DDA) liquid chromatography high-resolution mass spectrometry (LC-HRMS) analytical data. This data was collected for a set of eight peptide drugs (somatostatin and seven synthetic analogues, containing non-standard amino acids) incubated with human serum. The samples obtained were used to perform metabolite identification, to reveal potential cleavage sites and to store the processed information in a searchable format within a database (WMB). During the metabolite identification study in total 17 metabolites were found resulting in 8 distinct cleavage sites. We compared the percent of remaining parent peptide with respect to the time for all investigated peptides to compute the half-life for each case. Moreover, we evaluated the influence of the chemical modifications on the half-life time of the investigated compounds comparing to the value obtained for somatostatin. All compounds from the dataset were hydrolyzed with the different velocity. More stable compounds were the compounds where following replacements were done both Phe7 to Msa7, Trp8 to D-Trp8 and/or both Cys3 and Cys14 to D-Cys. 

We demonstrate that the developed approach can elucidate metabolite structure of cyclic peptides and those containing unnatural amino acids. The processed information obtained could be stored in a searchable format within a database leading to frequency analysis of the labile sites for the analyzed peptides. This new algorithm may be useful to optimize peptide drug properties with regards to cleavage sites, stability, metabolism, and degradation products in drug discovery. 

Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry

Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry

November 2017

Radchenko T; Brink A; Siegrist Y; Kochansky C; Bateman A; Fontaine F; Morettoni L; Zamora I

Abstract

Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example.

We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids). This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids) of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The main advantages of the developed approach are the abilities to elucidate metabolite structure of cyclic peptides and those containing unnatural amino acids, store processed information in a searchable format within a database leading to frequency analysis of the labile sites for the analyzed peptides. The presented algorithm may be useful to optimize peptide drug properties with regards to cleavage sites, stability, metabolism and degradation products in drug discovery. 

Structure-metabolism relationships in human- AOX: Chemical insights from a large database of aza-aromatic and amide compounds

Structure-metabolism relationships in human- AOX: Chemical insights from a large database of aza-aromatic and amide compounds

April 2018.

Lepri S, Ceccarelli M, Milani N, Tortorella S, Cucco A, Valeri A, Goracci L, Brink A, Cruciani G.

Abstract

Aldehyde oxidase (AOX) is a metabolic enzyme catalyzing the oxidation of aldehyde and aza-aromatic compounds and the hydrolysis of amides, moieties frequently shared by the majority of drugs. Despite its key role in human metabolism, to date only fragmentary information about the chemical features responsible for AOX susceptibility are reported and only “very local” structure-metabolism relationships based on a small number of similar compounds have been developed.

This study reports a more comprehensive coverage of the chemical space of structures with a high risk of AOX phase I metabolism in humans. More than 270 compounds were studied to identify the site of metabolism and the metabolite(s). Both electronic [supported by density functional theory (DFT) calculations] and exposure effects were considered when rationalizing the structure-metabolism relationship. 

Metabolism study and biological evaluation of bosentan derivatives

Metabolism study and biological evaluation of bosentan derivatives 

October 2016

Lepri S,Goracci L, Valeri A, Cruciani G.

Abstract

Bosentan, the first-in-class drug used in treatment of pulmonary arterial hypertension, is principally metabolized by the cytochromes P450, and it is responsible for cytochromes induction and drug-drug interaction events with moderate to severe consequences. A strategy to reduce drug-drug interactions consists of increasing the metabolic stability of the perpetrator, and fluorinated analogues are often designed to block the major sites of metabolism. In this paper bosentan analogues were synthesized, and their metabolism and biological activity were evaluated. All synthesized compounds showed an improved metabolic stability towards CYP2C9, with one maintaining a moderate antagonist effect towards the ETA receptor.

 

Development, optimization and implementation of a centralized metabolic soft spot assay

Development, optimization and implementation of a centralized metabolic soft spot assay

April 2017

Paiva AA; Klakouski C; Li S; Johnson BM; Shu YZ; Josephs J; Zvyaga T; Zamora I; Shou WZ

Abstract

Aim: High clearance is a commonly encountered issue in drug discovery. Here we present a centralized metabolic soft spot identification assay with adequate capacity and turnaround time to support the metabolic optimization needs of an entire discovery organization. Methodology: An integrated quan/qual approach utilizing both an orthogonal sample-pooling methodology and software-assisted structure elucidation was developed to enable the assay. Major metabolic soft spots in liver microsomes (rodent and human) were generated in a batch mode, along with kinetics of parent disappearance and metabolite formation, typically within 1 week of incubation. Results & conclusion: A centralized metabolic soft spot identification assay has been developed and has successfully impacted discovery project teams in mitigating instability and establishing potential structure–metabolism relationships.